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Abstract—We consider an uncertain linear inverse problem as follows. Given observation
ω = Ax∗ + ζ where A ∈ Rm×p and ζ ∈ Rm is observation noise, we want to recover unknown
signal x∗, known to belong to a convex set X ⊂ Rn. As opposed to the “standard” setting
of such a problem, we suppose that the model noise ζ is “corrupted”—contains an uncer-
tain (deterministic dense or singular) component. Specifically, we assume that ζ decomposes
into ζ = Nν∗ + ξ where ξ is the random noise and Nν∗ is the “adversarial contamination”
with known N ⊂ Rn such that ν∗ ∈ N and N ∈ Rm×n. We consider two “uncertainty se-
tups” in which N is either a convex bounded set or is the set of sparse vectors (with at most
s nonvanishing entries). We analyse the performance of “uncertainty-immunized” polyhedral
estimates—a particular class of nonlinear estimates as introduced in [19, 20]—and show how
“presumably good” estimates of the sort may be constructed in the situation where the signal
set is an ellitope (essentially, a symmetric convex set delimited by quadratic surfaces) by means
of efficient convex optimization routines.

Keywords : robust estimation, linear inverse problems with contaminated observations, signal
estimation in singular noise
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1. SITUATION AND GOALS

1.1. Introduction

Since the term was coined in the 1950s, the problem of robust estimation has received much
attention in the classical statistical literature. It is impossible to give an overview of the existing
literature on robust estimation, and we do not try to do it here; for the “classical” framework one
may refer to early references in [39], the foundational manuscript [16], or a recent survey [41].1

In this paper, our focus is on robust estimation of a signal from indirect linear observations.
Specifically, suppose that our objective is to recover a linear image w∗ = Bx∗ of unknown signal x∗,
known to belong to a given convex set X ⊂ Rp, given B ∈ Rq×p, A ∈ Rm×p, and a noisy observation

ω = Ax∗ + η∗ + ξ ∈ Rm (1)

of x∗, perturbed by a mixed—random-and-deterministic noise ξ + η∗. Here ξ is the random noise
component, while η∗ is the “adversarial” deterministic noise. Recently, this problem attracted much
attention in the context of robust recovery of sparse (with at most s � p nonvanishing entries)
signal x∗. In particular, robust sparse regression with an emphasis on contaminated design was

1 An important contribution to the development of robust statistics has been the line of work on distributionally
robust algorithms of stochastic optimization and system identification by B. Polyak and Ya. Tsypkin, see [31–36].
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ON ROBUST RECOVERY OF SIGNALS FROM INDIRECT OBSERVATIONS 719

investigated in [1, 5, 9, 25, 29]; methods based on penalizing the vector of outliers were studied
in [7, 13], see also [3, 37]. We refer to the monograph [8] for the description of the present state
of the art.

In this paper, our emphasis is on rather different assumptions about the structure of the signal x∗
to be recovered and on the contamination η∗ what precludes direct comparison with the cited results.
Namely, we assume that the set X of signals is an ellitope—a convex compact symmetric w.r.t.
the origin subset of Rp delimited by quadratic surfaces.2 Our interest in ellitopes is motivated
by the fact that these signal sets are well suited for the problem of estimating unknown signal x∗
from observation (1) in the Gaussian no-nuisance case (η∗ = 0, ξ ∼ N (0, σ2Im)). Specifically, let
us consider linear estimate ŵlin(ω) = GT

linω and polyhedral estimate ŵpoly(ω) = Bx̂poly(ω) where

x̂poly(ω) ∈ Argmin
x∈X

‖GT
poly(Ax− ω)‖∞

of w∗. Let X be an ellitope, and let the estimation error be measured in a co-ellitopic norm ‖·‖ (i.e.,
such that the unit ball B∗ of the norm ‖·‖∗ conjugate to ‖·‖ is an ellitope). In this situation, one can
point out (cf. [17, 19, 20]) efficiently computable contrast matrices Glin ∈ Rm×q and Gpoly ∈ Rm×m

such that estimates ŵlin(·) and ŵpoly(·) attain nearly minimax-optimal performance.

We suppose that the adversarial perturbation η∗ has a special structure: we are given a “nuisance
set” N ⊂ Rn such that ν∗ ∈ N and a m×n matrix N such that η∗ = Nν∗. We consider two types
of assumptions about N : N is either 1) a (nonempty) compact convex set, or, more conventionally,
2) N is the set of sparse disturbances (with at most s � n nonvanishing components). Our focus is
on the design and performance analysis of the “uncertainty immunized” polyhedral estimate ŵ(ω)
of w∗ = Bx∗ in the presence of the contaminating signal, and solving the problem in the first case
leads to a “presumably good” solution for the second.

We would like to emphasize the principal feature of the approach we promote: in this paper,
A, B, and N are “general” matrices of appropriate dimensions, while X and N are rather general
sets. As a consequence, we adopt here an “operational” approach3 initiated in [10] and further
developed in [18–20, 22], within which both the estimates and their risks are yielded by efficient
computation, rather than by an explicit analytical analysis, seemingly impossible under the cir-
cumstances. The term “efficient” in the above is essential and is also responsible for the principal
limitations of the results to follow. First of all, it imposes restrictions on the structure of the set
of signals of interest and on the norm quantifying the estimation error. As it is shown in [20], the
maximum of a quadratic form over an ellitope admits a “reasonably tight” efficiently computable
upper bound, leading to tight bounds on the risk of linear and polyhedral estimates when the signal
set is an ellitope. Furthermore, while in the case of convex compact set N of contaminations, con-
structing risk bounds for the polyhedral estimate ŵG(ω) associated with a given contrast matrix G
is possible under rather weak assumptions about the nuisance set N (essentially, the computational
tractability4 of this set is sufficient), the fundamental problem of contrast synthesis—minimizing
these bounds over contrast matrices—allows for efficiently computable solution only when N is
either an ellitope itself, or is a “co-ellitope” (the polar of an ellitope).

To complete this section, we would like to mention another line of research on the problem of
estimating signal x∗ from observation (1) under purely deterministic disturbance (case of ξ = 0),

2 See [20, Section 4.2.1] or Section 1.3 below; as of now, an instructive example of ellitope is an intersection of a
finite family of ellipsoids/elliptic cylinders with a common center.

3 As opposed to the classical “descriptive” approach to solving the estimation problem in question via deriving and
optimizing, w.r.t. estimate parameters, closed-form analytical expressions for the risk of a candidate estimate.

4 For most practical purposes, computational tractability of a est means that we can model the set constraint
using the CVX [15]. For an “executive summary” of what these words actually mean, we refer the reader to [20,
Appendix A].
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the standard problem of optimal recovery [26, 27] and guaranteed estimation in dynamical systems
under uncertain-but-bounded perturbation [6, 12, 14, 23, 24, 28, 38]. The present work may be seen
as an attempt to extend the corresponding framework to the case in which both deterministic and
random observation noises are present.

Organization of the paper. We introduce the exact statement of the estimation problem to be
considered and the entities that are relevant for the analysis to follow in Section 1.2. Analysis and
design of the polyhedral estimate in the case of uncertain-but-bounded contamination are presented
in Section 2. Then in Section 3 we describe the application of the proposed framework to the case
of (unbounded) singular contamination using the sparse model of the nuisance vector. Finally, we
recall some results on �1 recovery used in the paper in Appendix.

Notation. In the sequel, order relations between vectors are understood entry-wise; e.g., t � t′ for
t, t′ ∈ Rn means that vector t− t′ has nonnegative entries. [A;B] and [A,B] stand for vertical and
horizontal concatenation of matrices A and B of appropriate dimensions. We denote Sm the space
of symmetric m × m matrices, Sm

+ denotes the positive semidefinite cone of Sm; notation A � B
(A � B) means that matrix A−B is positive semidefinite (respectively, positive definite). In what
follows, for a nonempty compact set Z ⊂ RN

φZ(ζ) := max
z∈Z

ζT t

is the support function of Z. We denote n[G] the maximum of Euclidean norms of the columns of
a matrix G.

1.2. The Problem

The estimation problem we are interested in is as follows:

Recall that we are given observation (cf. (1))

ω = Ax∗ +Nν∗ + ξ ∈ Rm (2)

where

• N ∈ Rm×n, A ∈ Rm×p are given matrices,

• ν∗ ∈ Rn is unknown nuisance signal, ν∗ ∈ N , a known subset of Rn,

• x∗ is an unknown signal of interest known to belong to a given convex compact set
X ⊂ Rp symmetric w.r.t. the origin,

• ξ ∼ Pξ is a random observation noise.

Given ω, our objective is to recover the linear image w∗ = Bx∗ of x∗, B being a given
q × p matrix.

Given ε ∈ (0, 1), we quantify the quality of the recovery ŵ(·) by its ε-risk5

Riskε[ŵ] = inf
{
ρ : Probξ∼Pξ

{ξ : ‖Bx∗ − ŵ(ω)‖ > ρ} � ε ∀(ν∗ ∈ N and x∗ ∈ X )
}

where ‖ · ‖ is a given norm.

Observation noise assumption. In the sequel, we assume that the observation noise ξ is sub-Gaussian
with parameters (0, σ2Im), that is,

E
{
eh

T ξ
}
� exp

(
1

2
σ2‖h‖22

)
.

5 The ε-risk of an estimate depends, aside of ε and the estimate, on the “parameters” ‖ · ‖, X , N ; these entities will
always be specified by the context, allowing us to omit mentioning them in the notation Riskε[·].
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1.3. Ellitopes

Risk analysis of a candidate polyhedral estimate heavily depends on the geometries of the signal
set X and norm ‖ · ‖. In the sequel, we restrict ourselves to the case where X and the polar B∗ of
the unit ball of ‖ · ‖ are ellitopes.

By definition [17, 20], a basic ellitope in Rn is a set of the form

X = {x ∈ Rn : ∃, t ∈ T : xTT�x � t�, � � L}, (3)

where T� ∈ Sk, T� � 0,
∑

� T� � 0, and T ⊂ RL
+ is a convex compact set with a nonempty interior

which is monotone: whenever 0 � t′ � t ∈ T one has t′ ∈ T . An ellitope is an image of a basic
ellitope under a linear mapping. We refer to L as ellitopic dimension of X .

Clearly, every ellitope is a convex compact set symmetric w.r.t. the origin; a basic ellitope, in
addition, has a nonempty interior.

Examples.
A. Bounded intersection X of L centered at the origin ellipsoids/elliptic cylinders {x ∈ Rn :
xTT�x � 1} [T� � 0] is a basic ellitope:

X = {x ∈ Rn : ∃t ∈ T := [0, 1]L : xTT�x � t�, � � L}

In particular, the unit box {x ∈ Rn : ‖x‖∞ � 1} is a basic ellitope.
B. A ‖ · ‖p-ball in Rn with p ∈ [2,∞] is a basic ellitope:

{x ∈ Rn : ‖x‖p � 1} =

⎧⎪⎨⎪⎩x : ∃t ∈ T = {t ∈ Rn
+, ‖t‖p/2 � 1} : x2�︸︷︷︸

xTT�x

� t�, � � n

⎫⎪⎬⎪⎭ .

Ellitopes admit fully algorithmic “calculus”—this family is closed with respect to basic operations
preserving convexity and symmetry w.r.t. the origin, e.g., taking finite intersections, linear im-
ages, inverse images under linear embedding, direct products, arithmetic summation (for details,
see [20, Section 4.6]).

Main assumption. We assume from now on that the signal set X and the polar B∗ of the unit ball
of the norm ‖ · ‖ are basic ellitopes:6

X = {x ∈ Rn : ∃t ∈ T : xTTkx � tk, k � K}, (4a)

B∗ = {y ∈ Rq : ∃s ∈ S : yTS�y � s�, � � L} (4b)

where T ⊂ RK
+ , S ∈ RL

+ are monotone convex compact sets with nonempty interiors, Tk � 0,∑
k Tk � 0, S� � 0, and

∑
� S� � 0.

2. UNCERTAIN-BUT-BOUNDED NUISANCE

In this section, we consider the case of uncertain-but-bounded nuisance. Specifically, we assume
thatN ⊂ Rn is a convex compact set, symmetric w.r.t. the origin, and specify π(·) as the semi-norm
on Rm given by

π(h) = sup
u

{
(Nu)Th : u ∈ N

}
.

6 The results to follow straightforwardly extend to the case where X and B∗ are “general” ellitopes; we assume them
to be basic to save notation.
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2.1. Bounding the ε-Risk of Polyhedral Estimate

In this section, a polyhedral estimate is specified by m × I contrast matrix G and is as fol-
lows: given observation ω (see (2)), we find an optimal solution x̂G(ω) to the (clearly solvable)
optimization problem

min
x,ν

{
‖GT (Ax+Nν − ω)‖∞ : x ∈ X , ν ∈ N

}
. (5)

Given a m× I matrix G = [g1, . . . , gI ], let Ξε[G] be the set of all realizations of ξ such that

|[gTi ξ]i| � σ
√
2 ln [2I/ε]︸ ︷︷ ︸
=:κ(ε)

‖gi‖2, ∀i � I. (6)

Note that

Probξ∼SG(0,σ2Im) {ξ �∈ Ξε(G)} � ε. (7)

Indeed, we have Eξ

{
eγg

T ξ
}
� e

1
2
γ2‖g‖22σ2

, implying that for all a � 0,

Prob{gT ξ > a} � inf
γ>0

exp

{
1

2
γ2‖g‖22σ2 − γa

}
= exp

{
−1

2
a2σ2‖g‖22

}
,

so that

Prob
{
∃i � I : |gTi ξ| > κ(ε)‖gi‖2

}
� 2I exp

{
−κ

2(ε)

2σ2

}
� ε.

Given a m× I contrast matrix G = [g1, . . . , gI ], consider the optimization problem

Opt[G] = min
λ,μ,γ

⎧⎨⎩fG(λ, μ, γ) : λ � 0, μ � 0, γ � 0, (8)

⎡⎣ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk +AT

[∑
i γigig

T
i

]
A

⎤⎦ � 0

⎫⎬⎭
where

fG(λ, μ, γ) = φS(λ) + 4φT (μ) + 4ψ2[G]
∑
i

γi

with

ψ[G] = max
i

π(gi) + κ(ε)n[G].

Proposition 1. Let (λ, μ, γ) be a feasible solution to the problem in (8). Then

Riskε[ŵG] � fG(λ, μ, γ),

i.e., the ε-risk of the estimate ŵG is upper bounded with fG(λ, μ, γ).

Proof. Let us fix ξ ∈ Ξε[G], x∗ ∈ X , and η∗ ∈ N . Let also x̂ = x̂G(ω) be the x-component of
some optimal solution [x̂; ν̂], ν̂ ∈ N , to (5) and, finally, let Δ = x̂− x∗. Observe that [x, ν] =
[x∗, ν∗] is feasible for (5) and ‖GT [Ax∗ +Nν∗ − ω]‖∞ = ‖GT ξ‖∞ � κ(ε)n[G], implying that
‖GT [Ax̂+Nν̂ − ω]‖∞ � κ(ε)n[G] as well. Therefore,

‖GTAΔ‖∞ � 2κ(ε)n[G] + ‖GTN [ν̂ − ν∗]‖∞.
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Taking into account that ν̂, ν∗ ∈ N , we have ‖GTN [ν̂ − ν∗]‖∞ � 2maxi π(gi), and we arrive at

|gTi AΔ| � 2ψ[G], i = 1, . . . , I. (9)

Now, we have Δ ∈ 2X , that is, for some t ∈ T and all k it holds ΔTTkΔ � 4tk, and let v ∈ B∗, so
that for some s ∈ S for all � it holds vTS�v � s�. By the semidefinite constraint of (8) we have

vTBΔ � vT
[∑

�

λ�S�

]
v +ΔT

[∑
k

μkTk

]
Δ+ [AΔ]T

∑
i

γigig
T
i AΔ

�
∑
�

λ�s� + 4
∑
k

μktk +
∑
i

γi(g
T
i AΔ)2

� φS(λ) + 4φT (μ) +
∑
i

γi(g
T
i AΔ)2

� φS(λ) + 4φT (μ) + 4ψ2[G]
∑
i

γi.

Maximizing the left-hand side of the resulting inequality over v ∈ B∗, we arrive at ‖BΔ‖ �
fG(λ, μ, γ). ��

Note that the optimization problem in the right-hand side of (8) is an explicit convex optimiza-
tion problem, so that Opt[G] is efficiently computable, provided that φS , φT and π are so. Thus,
Proposition 1 provides us with an efficiently computable upper bound on the ε-risk of the polyhe-
dral estimate stemming from a given contrast matrix G and as such gives us a computation-friendly
tool to analyse the performance of a polyhedral estimate. Unfortunately, this tool does not allow
to design a “presumably good” estimate, since an attempt to make G a variable, rather than a
parameter, in the right-hand side problem in (8) results in a nonconvex, and thus difficult to solve,
optimization problem. We now look at two situations in which this difficulty can be overcome.

2.2. Synthesis of “Presumably Good” Contrast Matrices

We consider here two types of assumptions about the set N of nuisances which allow for a
computationally efficient design of “presumably good” contrast matrices. Namely,

1) “ellitopic case:” N is a basic ellitope;

2) “co-ellitopic case:” the set NN = {Nν : ν ∈ N} is the polar of the ellitope

N∗ = {w ∈ Rm : ∃r ∈ R : wTRjw � rj , j � J}[
Rj � 0,

∑
j Rj � 0; R ⊂ RJ

+, intR �= ∅, is a monotone convex compact
]

Note that N∗ is exactly the unit ball of the norm π(g) = maxν∈N gTNν.

2.2.1. Ellitopic case. An immediate observation is that the ellitopic case can be immediately
reduced to the no-nuisance case. Indeed, when N is an ellitope, so is the direct product X = X ×N .
Thus, setting A[x; ν] = Ax+Nν, B[x; ν] = Bx, observation (2) becomes

ω = Ax∗ + ξ, [x∗ = [x∗; ν∗] ∈ X ]

and our objective is to recover from this observation the linear image w∗ = Bx∗ of the new signal x∗.
Design of presumably good (and near-minimax-optimal when ξ ∼ N (0, σ2Im)) polyhedral estimates
in this setting is considered in [20]. It makes sense to sketch the construction here since it explains
the idea used throughout the rest of the paper.
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Thus, consider the case when N = {0}, and let the signal set and the norm ‖ · ‖ still be given
by (4). In this situation problem (8) becomes

Opt[G] = min
λ,μ,γ

⎧⎨⎩φS(λ) + 4φT (μ) + 4κ2(ε)n2[G]
∑
i

γi : λ � 0, μ � 0, γ � 0, (10)

⎡⎣ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk +AT

[∑
i γigig

T
i

]
A

⎤⎦ � 0

⎫⎬⎭ .

Note that when θ > 0, we have Opt[G] = Opt[θG]. Indeed, (λ, μ, γ) is a feasible solution to the
problem specifying Opt[G] if and only if λ, μ, θ2γ) is a feasible solution to the problem specifying
Opt[θG], and the values of the respective objectives at these solutions are the same. It follows that
as far as optimization of Opt[G] in G is concerned, we lose nothing when restricting ourselves to
contrast matrices G with κ(ε)n[G] = 1. In other words, by setting

θ(g) = κ(ε)‖g‖2 (11)

and augmenting variables λ, μ, and γ in (10) by variables gi, θ(gi) � 1, i = 1, . . . , I (recall that we
want to make G variable rather than parameter and to minimize Opt[G] over G), we arrive at the
problem

Opt = min
λ,μ,γ,{gi},ρ

⎧⎨⎩φS(λ) + 4φT (μ) + 4ρ : λ � 0, μ � 0, γ � 0, (12)

θ(gi) � 1,
∑
i

γi � ρ,

⎡⎣ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk +AT

[∑
i γigig

T
i

]
A

⎤⎦ � 0

⎫⎬⎭ .

Now, aggregating variables γ, g1, . . . , gI into the matrix Θ =
∑

i γigig
T
i and denoting by T the set

of the pairs (Θ ∈ Sm
+ , ρ) for which there exists decomposition Θ =

∑
i�I γigig

T
i with θ(gi) � 1 and

γi � 0,
∑

i γi � ρ, (12) can be rewritten as the optimization problem

Opt = min
λ,μ,Θ,ρ

{
φS(λ) + 4φT (μ) + 4ρ : λ � 0, μ � 0, (13)

(Θ, ρ) ∈ T,

[ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk +ATΘA

]
� 0

}
.

Observe that when I � m, T is a simple convex cone:

T = {(Θ, ρ) : Θ � 0, ρ � κ
2(ε)Tr(Θ)},

so that (13) is an explicit (and clearly solvable) convex optimization program. To convert an
optimal solution (λ∗, μ∗,Θ∗, ρ∗) to (13) into an optimal solution to (12), it suffices to subject Θ∗

to the eigenvalue decomposition Θ∗ =
∑I

i=1 υieie
T
i with ‖ei‖2 = 1 and υi � 0, i ∈ {1, . . . ,m}, and

ei = 0, υi = 0, i ∈ {m, . . . , I}, and set g∗i = κ
−1(ε)ei, γ

∗
i = κ

2(ε)υi, thus arriving at an optimal
solution (λ∗, μ∗, {g∗i , γ∗i }i�I , ρ

∗) to problem (12).

2.2.2. Co-ellitopic case. The just outlined approach to reducing the nonconvex problem (12)
responsible for the design of the best, in terms of Opt[G], contrast matrix G to an explicit convex
optimization problem heavily utilizes the fact that the unit ball of the norm θ(·) (cf. (11)) is a simple
ellitope—a multiple of the unit Euclidean ball; this was the reason for T to be a computationally
tractable convex cone. Our future developments are built on the fact that when the unit ball of θ(·)
is a basic ellitope, something similar takes place: the associated set T, while not necessarily convex
and computationally tractable, can be tightly approximated by a computationally tractable convex
cone. The underlying result (which is [21, Proposition 3.2], up to notation) is as follows:

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025
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Proposition 2. Let I � m, and let W ⊂ Rm be a basic ellitope:

W = {w ∈ Rm : ∃r ∈ R : wTRjw � rj, j � J}[
Rj � 0,

∑
j Rj � 0; R ⊂ RJ

+, intR �= ∅, is a monotone convex compact
]

Let us associate with W the closed convex cone7

K = {(Θ, ρ) : ∃r ∈ R : Tr(ΘRj) � ρrj , 1 � j � J, Θ � 0, ρ � 0} .

Whenever a matrix Θ ∈ Sm
+ is representable as

∑
i γiwiw

T
i with γi � 0 and wi ∈ W, one has

(Θ,
∑I

i=1 γi) ∈ K, and nearly vice versa: whenever (Θ, ρ) ∈ K, one can find efficiently (via a ran-
domized algorithm) vectors wi ∈ W, and reals γi � 0, i � I, such that Θ =

∑
i γiwiw

T
i and and∑

i

γi � 2
√
2 ln(4m2J)ρ.

We are now ready to outline a “presumably good” contrast design in the co-ellitopic case. Let us

put Rj =
1
4Rj, j � J , and RJ+1 =

κ2(ε)
4 Im and consider the ellitope

W = 2
[
N∗ ∩ {w : κ(ε)‖w‖2 � 1}

]
=

{
w ∈ Rm : ∃r ∈ R = R× [0, 1] : wTRjw � rj, j � J = J + 1

}
, (14)

and let θ(·) be the norm on Rn with the unit ball W. Note that θ(·) = 2max
[
π(·), κ(ε)‖ · ‖2

]
,

so that for every G = [g1, .., gI ], the quantity ψ[G], see (8), is upper-bounded by maxi θ(gi), and
this bound is tight within the factor 2. Consequently, Proposition 1 states that the ε-risk of the
polyhedral estimate with contrast matrix G is upper-bounded by the quantity

Opt[G] = min
λ,μ,γ

{
φS(λ)+4φT (μ)+4

[
max

i
θ(gi)

]2∑
i

γi : λ� 0, μ� 0, γ � 0, (15)

⎡⎣ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk +AT

[∑
i γigig

T
i

]
A

⎤⎦ � 0

⎫⎬⎭
and Opt[G] � Opt[G] � 2Opt[G]. As in the previous section, the problem of minimizing Opt[G]
over G can be reformulated in the form (13). A computationally efficient way to get a tight
approximation to the optimal solution of the latter problem is given by the following result.

Let I � m, α = 2
√
2 ln(4m2J), and let

K = {(Θ, ρ) : ∃r ∈ R : Tr(ΘRj) � ρrj , 1 � j � J, Θ � 0, ρ � 0}

(see (14)). Consider the convex optimization problem

Opt∗ = min
λ,μ,γ,Θ,ρ

{
φS(λ) + 4φT (μ) + 4αρ : λ � 0, μ � 0, (16)

(Θ, ρ) ∈ K,

[ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk +ATΘA

]
� 0

}
.

7 This indeed is a closed convex cone—the conic hull of the convex compact set {Θ � 0 : ∃r ∈ R : Tr(ΘRj) � rj ,
1 � j � J} × {1}.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



726 BEKRI et al.

Theorem 1. One can convert, in a computationally efficient way, the Θ-component Θ∗ of an
optimal solution to the (clearly solvable) problem (16) into the contrast matrix G∗ such that

Opt[G∗] �
√
αmin

G
Opt[G] � 2

√
αmin

G
Opt[G].

In particular, the ε-risk of the polyhedral estimate with contrast matrix G∗ (this risk is upper-bounded
by Opt[G∗]) does not exceed 2

√
αminGOpt[G].

Proof. When repeating the reasoning in the previous section, we conclude that Opt := infG Opt[G]
is equal to

inf
g1,...,gI

{
Opt([g1, . . . , gI ]) : max

i
θ(gi) = 1

}
.

The latter inf is clearly attained at certain collection g+i , . . . , g
+
I with maxi θ(g

+
i ) = 1. Let G+ =

[g+1 , . . . , g
+
I ], let λ+, μ+, γ+i , i � I, be an optimal solution to the problem in the right-hand side

of (15) associated with gi = g+i , i � I, and let Θ+ =
∑

i γ
+
i [g

+
i ][g

+
i ]

T and ρ+ =
∑

i γ
+
i . We clearly

have
Opt = Opt[G+] = φS(λ

+) + 4φT (μ
+) + 4ρ+.

Besides this, we are in the case where θ(g) � 1 is equivalent to g ∈ W, and therefore, by the
first claim in Proposition 2, (Θ+, ρ+) ∈ K, implying that (λ+, μ+,Θ+, ρ+) is a feasible solution
to the optimization problem in (16). Due to the structure of the latter problem, for κ > 0 the
collection (κ−1λ+, κμ+, κΘ+, κρ+) is feasible for (16) with the corresponding value of the objective
κ−1φS(λ+) + κ[φT (μ+) + 4αρ+]. It follows that

Opt∗ � inf
κ>0

[
κ−1φS(λ

+) + κ[4φT (μ
+) + 4αρ+]

]
= 2

(
φS(λ

+) [4φT (μ
+) + 4αρ+]︸ ︷︷ ︸

�α[4φT (μ+)+4ρ+]

)1/2 � 2
√
φS(λ+)[4φT (μ+) + 4ρ+]

√
α

�
√
α[φS(λ

+) + 4φT (μ
+) + 4ρ+] =

√
αOpt.

Finally, let λ, μ,Θ, ρ be an optimal solution to (16). As (Θ, ρ) ∈ K, the second claim in Proposition 2
states that there exists (and can be efficiently found) decomposition Θ =

∑
i γi[gi][g]

T
i with gi ∈ W

(i.e., θ(gi) � 1), i � I, γi � 0, and
∑

i γi � αρ. The ε-risk of the polyhedral estimate with the
contrast matrix G = [g1, . . . , gI ] is then upper-bounded by Opt[G]. However, λ, μ, and {γi} form
a feasible solution to the problem specifying Opt[G], and the value of the objective at this solution
is upper bounded with

φS(λ) + 4φT (μ) + 4[max
i

θ(gi)]
∑
i

γi � φS(λ) + 4φT (μ) + 4αρ = Opt∗.

Thus, the ε-risk of the polyhedral estimate with contrast matrix G does not exceed

Opt∗ �
√
αOpt � 2

√
αmin

G
Opt[G]. ��

3. OBSERVATIONS WITH OUTLIERS

In this section, we consider the estimation problem posed in Section 1.2 in the situation where
the nuisance ν∗ in (2) is sparse—has at most a given number s of nonzero entries.

Estimate construction. Let ε ∈ (0, 1) be a given reliability tolerance. We consider the polyhedral
estimate specified by two contrast matrices H = [h1, . . . , hn] ∈ Rm×n and G = [g1, . . . , gI ] ∈ Rn×I

which is as follows. Given observation ω (see (2)) we solve the optimization problem

min
ν,x

⎧⎨⎩‖ν‖1 : x∈X ,
|hTk [Nν +Ax− ω] | � κ(ε)‖hk‖2, k = 1, . . . , n,

|gTi [Nν +Ax− ω]| � κ(ε)‖gi‖2, i = 1, . . . , I

⎫⎬⎭ , (17)
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where
κ(ε) = σ

√
2 ln[2(n+ I)/ε].

Let (ν̂, x̂) = (ν̂(ω), x̂(ω)) be an optimal solution to the problem when the problem is feasible,
otherwise we put (ν̂, x̂) = (0, 0). Vector

ŵG,H(ω) = Bx̂(ω)

is the estimate of w∗ = Bx∗ we intend to use.

3.1. Risk Analysis

Let us denote Ξε(G,H) the set of realizations of ξ such that

|hTk ξ| � κ(ε)‖hk‖2, k = 1, . . . , n, |gTi ξ| � κ(ε)‖gi‖2, i = 1, . . . , I, ∀ξ ∈ Ξε(G,H). (18)

For the same reasons as in (7), one has

Probξ∼SG(0,σ2Im)(Ξε(G,H)) � 1− ε.

Let us now fix x∗ ∈ X , s-sparse ν∗, and ξ ∈ Ξε(G,H), so that our observation is ω = Ax∗+Nν∗+ξ.

A. By (18) we have |hTk ξ| � κ(ε)‖hk‖2 and |gTi ξ| � κ(ε)‖gi‖2 for all k � n and i � I, while (17)
becomes the problem

min
ν,x

{
‖ν‖1 : x∈X ,

|hTk [N [ν−ν∗]+A[x−x∗]− ξ]|�κ(ε)‖hk‖2, k = 1, . . . , n,

|gTi [N [ν−ν∗]+A[x−x∗]− ξ]|�κ(ε)‖gi‖2, i = 1, . . . , I

}
. (19)

We conclude that (ν, x) = (ν∗;x∗) is a feasible solution to (17). Thus, we are in the case where ν̂, x̂
are feasible for (19), and

‖ν̂‖1 � ‖ν∗‖1.

B. Assume from now on that (H, ‖ · ‖∞) satisfies Condition Q∞(s, κ) of Section 3.5 with κ < 1
2 ,

that is,8

‖w‖∞ � ‖HTNw‖∞ +
κ

s
‖w‖1 ∀w ∈ Rn. (20)

Since ν̂ and x̂ are feasible for (19), we have

|hTk [N [ν̂ − ν∗] +A[x̂− x∗]− ξ]| � κ(ε)‖hk‖2, ∀k � n.

Invoking (18) and the fact that A[x̂ − x∗] ∈ 2AX (since X is symmetric w.r.t. the origin), we
conclude that

‖HTN [ν̂ − ν∗]‖∞ � max
k

[
κ(ε)‖hk‖2 + 2max

x∈X
|hTkAx|

]
,

and besides this, ν∗ is s-sparse and ‖ν̂‖1 � ‖ν∗‖1. Now Proposition 5 with ν∗ in the role of ν implies
that

‖ν̂ − ν∗‖q �
(2s)

1
q

1− 2κ
max
k

[
κ(ε)‖hk‖2 + 2max

x∈X
|hTkAx‖

]
, 1 � q � ∞, (21)

8 Condition Q∞(s, κ) is the simplest (and the most restrictive) member of the family Qq(s, κ), q ∈ [1,∞] of conditions
used to establish the properties of �1-recovery of sparse signals. The property of this condition crucial here is that
it can be efficiently verified. We refer to [20, Section 1.3] for the discussion of efficiently verifiable conditions in
sparse recovery and their relation to other conditions used (Restricted Isometry Property (RIP) [4], Restricted
Eigenvalue (RE) [2], Mutual Incoherence (MI) [11], and Compatibility [40]).
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in particular, that

‖ν̂ − ν∗‖∞ � 1

1− 2κ
max
k

[
κ(ε)‖hk‖2 + 2max

x∈X
|hTkAx‖

]
=: ρH , (22a)

‖ν̂ − ν∗‖1 �
2s

1− 2κ
max
k

[
κ(ε)‖hk‖2 + 2max

x∈X
|hTkAx‖

]
= 2sρH . (22b)

In addition, [20, Proposition 1.10] states that the set H of the pairs (H,κ) with m× n matrices H
satisfying Condition Q∞(s, κ) is the computationally tractable convex set

H =
{
(H,κ) ∈ Rm×n ×R :

∣∣[In −NTH]ij
∣∣ � s−1κ, 1 � i, j � n

}
. (23)

C. Since ν̂ and x̂ are feasible for (19), we have

|gTi (N [ν̂ − ν∗] +A[x̂− x∗]− ξ) | � κ(ε)‖gi‖2, i = 1, . . . , I,

while |gTi ξ| � κ(ε)‖gi‖2 ∀i due to ξ ∈ Ξε(G,H). We conclude that

|gTi A[x̂− x∗]| � 2κ(ε)‖gi‖2 + |gTi N [ν̂ − ν∗]|, i � I. (24)

Let ‖z‖k,1, z ∈ Rn, be the sum of min[k, n] largest magnitudes of entries in z; note that ‖ · ‖k,1 is
the norm conjugate to the norm with the unit ball {u : ‖u‖∞ � 1, ‖u‖1 � k}. Consequently, (22)
implies that

|gTi N [ν̂ − ν∗]| � ρH‖NT gi‖2s,1, (25)

and, therefore, by (24)

|gTi A[x̂− x∗]| � ψH [G], ψH [G] = max
i

[
2κ(ε)‖gi‖2 + ρH‖NT gi‖2s,1

]
. (26)

Let

fG,H(λ, μ, γ) = φS(λ) + 4φT (μ) + ψ2
H [G]

∑
i

γi,

and let us consider the optimization problem (cf. (8))

Opt[G,H] = min
λ,μ,γ

⎧⎨⎩fG,H(λ, μ, γ) :

λ � 0, μ � 0, γ � 0,

⎡⎣ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk +AT

[∑
i γigig

T
i

]
A

⎤⎦ � 0.

⎫⎬⎭ (27)

Applying the same argument as in the proof of Proposition 1, with (26) in the role of (9), we arrive
at the following result:

Proposition 3. In the situation of this section given κ ∈ (0, 1/2) and m× n matrix H satisfying
(H,κ) ∈ H, see (23), let (λ, μ, γ) be a feasible solution to (27). Then

Riskε[ŵG,H ] � fG,H(λ, μ, γ).
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3.2. Synthesis of Contrast Matrices

Our present objective is to design contrast matrices H and G with a small value of the bound
Opt[G,H] for the ε-risk of the estimate ŵG,H .

D. Building the contrast matrix H ∈ Rm×n is straightforward: the risk bound Opt[G,H], depends
on H = [h1, . . . , hn] solely through the quantity

ρH =
1

1− 2κ
max
k�n

[
κ(ε)‖hk‖2 + 2max

x∈X
‖hTkAx‖∞

]
and is smaller the smaller is ρH . For a fixed κ ∈ (0, 1/2), a presumably good choice of H =
[h1, . . . , hn] is then given by optimal solutions to n optimization problems

hk = argmin
h

{
κ(ε)‖h‖2 + 2max

x∈X
‖hTAx‖∞ : h ∈ Rm, ‖Coli[In −NTh]‖∞ � s−1κ

}
(28)

which, when recalling what X is, by conic duality, are equivalent to the problems

hk = argmin
h,v,χ

{
κ(ε)‖h‖2 + v + φT (χ) : h ∈ Rm, χ � 0,[

v hTA

ATh
∑

k χkTk

]
� 0, ‖Coli[In −NTh]‖∞ � s−1κ

}
, 1 � k � n.

E. The proposed construction of G is less straightforward. We proceed as follows. Let G = [G1, G2]
where G2, G1 ∈ Rm×m (so that I = 2m).

E.1 Notice that as ξ ∈ Ξε(G,H), problem (19) is feasible, and (x̂, ν̂) is its feasible solution. For a
column g of G, by the constraints of the problem, we have

|gTA[x̂− x∗]| � 2κ(ε)‖g‖2 + |gTN [ν̂ − ν∗]| � 2κ(ε)‖g‖2 + 2sρH‖NT g‖∞, (29)

(we have used (24) and (25)), implying that(
gTA[x̂− x∗]

)2 � 2
(
4κ2(ε)‖g‖22 + 4s2ρ2H‖NT g‖2∞

)
, i = 1, . . . ,m. (30)

Note that the set
M =

{
g ∈ Rm : 8κ2(ε)‖g‖22 + 8s2ρ2H‖NT g‖2∞ � 1

}
is an ellitope: when denoting N = [n1, . . . ,nn] we have

M =

{
g ∈ Rm : ∃r ∈ [0, 1]n : gT

(
8κ2(ε)Im + 8s2ρ2Hnjn

T
j

)
︸ ︷︷ ︸

Mj

g � rj, j = 1, . . . , n

}
.

E.2 Next, observe that when ξ ∈ Ξε(G,H), by (21) one has

‖ν̂ − ν∗‖2 �
√
2s

1− 2κ
max
k�n

[
κ(ε)‖hk‖2 +max

x∈X
|hTkAx|

]
=

√
2sρH .

Then by (29), for a column g of G it holds(
gTA[x̂− x∗]

)2
�

(
2κ(ε)‖g‖2 + |gTN [ν̂ − ν∗]|

)2
�

(
2κ(ε)‖g‖2 +

√
2sρH‖NT g‖2

)2
� gT

(
8κ2(ε)Im + 4sρ2HNNT

)
g. (31)
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Now, let us put

Q =
(
8κ2(ε)Im + 4sρ2HNNT )−1/2

, (32)

and consider the optimization problem

Opt = min
λ,μ,Θ1,Θ2,ρ

{
fH(λ, μ,Θ1,Θ2, ρ) : λ � 0, μ � 0, Θ1 � 0, Θ2 � 0, (33a)

Tr(MjΘ1) � ρ, j = 1, . . . , n,

[ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk +AT (Θ1 +QΘ2Q

T )A

]
� 0

}
where

fH(λ, μ,Θ1,Θ2, ρ) = φS(λ) + 4φT (μ) + Tr(Θ2) + 2
√
2 ln(4m2n)ρ. (33b)

Note that the constraints on Θ1 and ρ of the problem (33a) say exactly that (Θ1, ρ) belongs to the
cone K associated, as explained in Proposition 2, with the ellitope M in the role of W.

Theorem 2. Given a feasible solution (λ, μ, τ,Θ1,Θ2) to (33), let us buildm×m contrast matrices
G1, G2 as follows.

• To build G1, we apply the second part of Proposition 2 to Θ1, ρ,M in the roles of Θ, ρ,W, to
get, in a computationally efficient way, a decomposition Θ1 =

∑m
i=1 γig1,ig

T
1,i with g1,i ∈ M

and γi � 0,
∑

i γi � 2
√
2 ln(4m2n)ρ. We set G1 = [g1,1, . . . , g1,m].

• To build G2, we subject Θ2 to eigenvalue decomposition Θ2 = ΓDiag{χ}ΓT and set G2 =
[g2,1, . . . , g2,m] = QΓ.

Note that Θ1 +QΘ2Q =
∑

i γig1,ig
T
1,i +

∑
i χig2,ig

T
2,i.

For the resulting polyhedral estimate ŵG,H and for all x∗ ∈ X , s-sparse ν∗ and ξ ∈ Ξε(G,H) it
holds

‖ŵG,H(Ax∗ +Nν∗ + ξ)−Bx∗‖ � fH(λ, μ,Θ1,Θ2, ρ) (34)

implying that the ε-risk of the estimate is upper-bounded by fH(λ, μ,Θ1,Θ2, ρ) (due to ξ ∈ Ξε(G,H)
with probability � 1− ε).

Proof. Let us fix x∗ ∈ X , s-sparse ν∗, ξ ∈ Ξε(G,H), and let w = Ax∗ +Nν∗ + ξ. By A, prob-
lem (17) is feasible, so that (x̂, ν̂) = (x̂(ω), ν̂(ω)) is its optimal solution, and ŵ = Bx̂ is the esti-
mate ŵG,H(ω). Let Δ = x̂− x∗, and let e1, . . . , em be the columns of the orthonormal matrix Γ.
By construction of G2, we have for all j � m (see (31))

(gT2,jAΔ)2 � gT2,j

(
8κ2(ε)Im + 4sρ2HNNT

)
g2,j = eTj

[
Q

(
8κ2(ε)Im + 4sρ2HNNT

)
Q
]
ej = eTj ej = 1.

Furthermore, due to g1,i ∈ M one has (see (30))(
gT1,iAΔ

)2 � 8κ2(ε)‖g‖22 + 8s2ρ2H‖NT g‖2∞ � 1 ∀i � m.

Now, by the semidefinite constraint of (33a) and due to Θ1 +QΘ2Q =
∑

i γig1,ig
T
1,i +

∑
i χig2,ig

T
2,i,

for every v ∈ B∗ we have

vTBΔ � vT
[∑

�

λ�S�

]
v +ΔT

[∑
k

μkTk

]
Δ+ [AΔ]T

[∑
i

γig1,ig
T
1,i +

∑
i

χig2,ig
T
2,i

]
AΔ

� φS(λ) + 4φT (μ) +
∑
i

χi(g
T
1,iAΔ)2 +

∑
j

γj(g
T
2,jAΔ)2

[
as [vTS1v; . . . ; v

TSLv] ∈ S due to v ∈ B∗ and [ΔTT1Δ; . . . ;ΔTTLΔ] ∈ 4T due to Δ ∈ 2X
]

� φS(λ) + 4φT (μ) +
∑
i

χi +
∑
j

γj � fH(λ, μ, τ,Θ1,Θ2)
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due to
∑

i γi � 2
√
2 ln(4m2n)ρ and

∑
i χi = Tr(Θ2). Taking the supremum over v ∈ B∗ in the

resulting inequality, we arrive at (34). ��

3.3. An Alternative

Our objective in this section is to refine risk bounds (27) and (33a) to produce more efficient
contrasts. Our course of action is as follows. First, to extend the possible choice of H-contrasts“
responsible” for the perturbation recovery, we refine the bounds (22) for the accuracy of sparse
recovery, notably, to allow using contrasts not satisfying Condition Q∞(s, κ). Second, we improve
the bounding of the risk of the estimate ŵ(ω) by taking into account the contribution of the H-
component of the “complete” contrast matrix [H,G] when optimizing the G-component of the
contrast.

In the sequel, we consider the estimate described at the beginning of Section 3, the only differ-
ence being in the sizes of contrast matrices G and H: now H = [h1, . . . , hM ] ∈ Rm×M , and G =
[g1, . . . , g2m]. Thus, in our present setting, given observation ω, we solve the optimization problem

min
ν,x

{
‖ν‖1 : x ∈ X ,

|hTk (Nν +Ax− ω)| � κ(ε)‖hk‖2, k = 1, . . . ,M,

|gTi (Nν +Ax− ω)| � κ(ε)‖g2,i‖2, i = 1, . . . , 2m,

}
(35)

with
κ(ε) = σ

√
2 ln[(2M + 4m)/ε],

specify x̂(ω), ν̂(ω) as an optimal solution to the problem when the problem is feasible, otherwise
set (x̂(ω), ν̂(ω)) = (0, 0), and take ŵG,H(ω) = Bx̂(ω) as the estimate of Bx∗.

3.3.1. Risk analysis. The above problem can be rewritten equivalently as

min
ν,x

{
‖ν‖1 : x ∈ X ,

|hTk (N [ν − ν∗] +A[x− x∗]− ξ)| � κ(ε)‖hk‖2, k = 1, . . . ,M,

|gTi (N [ν − ν∗] +A[x− x∗]− ξ)| � κ(ε)‖gi‖2, i = 1, . . . , 2m,

}
(36)

and when setting

Ξε(G,H) :=

{
ξ ∈ Rm :

|hTk ξ| � κ(ε)‖hk‖2, k = 1, . . . ,M,

|gTi ξ| � κ(ε)‖gi‖2, i = 1, . . . , 2m,

}
(37)

we have

Probξ∼SG(0,σ2Im)(Ξε(G,H)) � 1− ε.

Let us fix ξ ∈ Ξε(G,H) and set ω = Ax∗ +Nν∗ + ξ. As (ν̂, x̂) is a feasible for (36), x̂ := x̂(ω),
ν̂ := ν̂(ω) is feasible as well, ‖ν̂‖1 � ‖ν∗‖1. Thus, same as in the proof of Proposition 5, for z = ν̂−ν∗
it holds

‖z‖1 � 2‖z‖s,1
implying that

‖z‖1 � 2s‖z‖∞, ‖z‖2 �
√
2s‖z‖∞. (38)

Now denote Δ = x̂− x∗, and consider n pairs of convex optimization problems

Opt2[i] = max
v,t,w

{
√
wit : v ∈ 2X ,

‖w‖∞ � wi, ‖w‖1 � t, t � 2swi,

|hTk (Nw +Av)| � 2κ(ε)‖hk‖2, k = 1, . . . ,M

}
(P2[i])

Opt∞[i] = max
v,w

{
wi : v ∈ 2X ,

‖w‖∞ � wi, ‖w‖1 � 2swi,

|hTk (Nw +Av)| � 2κ(ε)‖hk‖2, k = 1, . . . ,M

}
. (P∞[i])
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Observe that a feasible solution (v, t, w) to (P2[i]) satisfies ‖w‖∞ � wi and ‖w‖1 � t, whence

‖w‖2 �
√
wit � Opt2[i]. (39)

Now, let ι = ιz be the index of the largest in magnitude entry in z. Taking into account that
ξ ∈ Ξε(G,H) and recalling that Δ ∈ 2X , we conclude that when zι � 0, (v, t, w) = (Δ, ‖z‖1, z) is
feasible for (P2[ι]) and (v,w) = (Δ, z) is feasible for (P∞[ι]), while when zι < 0 the same holds
true for (v, t, w) = (−Δ, ‖z‖1,−z) and (v,w) = (−Δ,−z). Indeed in the first case v = Δ ∈ X ,
|hTk [Ax̂+Nν̂ − ω]| � κ(ε)‖hk‖2 and |hTk [Ax∗ +Nν∗ − ω]| � κ(ε)‖hk‖2 as both pairs (x̂, ν̂) and
(x∗, ν∗) are feasible for (35), implying the second line constraints of (P2[i]). Note that we are
in the case of zι = ‖z‖∞, that is, constraints in the first line of (P2[i]) are satisfied for w = z due
to (38). Thus, (Δ, ‖z‖1, z) indeed is feasible for (P2[i]). As a byproduct of our reasoning, (Δ, z) is
feasible for (P∞[i]). In the second case, the reasoning is completely similar.

Next, setting

Opt2 = max
i

Opt2[i], Opt∞ = max
i

Opt∞[i], (40)

and recalling that (Δ, ‖z‖1, z) or (−Δ, ‖z‖1,−z) is feasible for some of the problems (P2[i]), and
(Δ, z) or (−Δ,−z) is feasible for some of the problems (P∞[i]), when invoking (39) we get for all
ξ ∈ Ξε(G,H)

‖z‖∞ � Opt∞, ‖z‖2 � Opt2, ‖z‖1 � 2sOpt∞.

Consequently, for all d ∈ Rm

|dTNz| � max
z

{
dTNz : ‖z‖∞ � Opt∞, ‖z‖2 � Opt2, ‖z‖1 � 2sOpt∞

}
= min

u,v,w

{
‖u‖1Opt∞ + ‖v‖2Opt2 + 2s‖w‖∞Opt∞, u+ v + w = NTd

}
︸ ︷︷ ︸

=:π(NT d)

. (41)

Now, recalling that x̂, ν̂ is feasible for (36) and that ξ ∈ Ξε(G,H), we conclude that columns di,
i = 1, . . . ,M + 2m of the “aggregated” contrast matrix D = [G,H] satisfy

|dTi AΔ| � |dTi Nz|+ |dTi ξ|+ κ(ε)‖g‖2,

whence
|diTAΔ| � π(NTdi) + 2κ(ε)‖di‖2︸ ︷︷ ︸

=:ψH(di)

, i � M+2m. (42)

Next, let us put
f̄G,H(λ, μ, γ) = φS(λ) + 4φT (μ) +

∑
i

γiψ
2
H(di),

and consider optimization problem (cf. (27))

Opt[G,H] = min
λ,μ,γ

⎧⎨⎩f̄G,H(λ, μ, γ) : λ � 0, μ � 0, γ � 0,

⎡⎣ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk +AT

[∑
i γididi

T
]
A

⎤⎦ � 0.

⎫⎬⎭ (43)

Applying the same argument as in the proof of Proposition 1, with (42) in the role of (9), we arrive
at the following result:

Proposition 4. In the situation of this section, let (λ, μ, γ) be a feasible solution to (43). Then

Riskε[ŵG,H |X ,N ] � f̄G,H(λ, μ, γ).
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3.3.2. Contrast matrix synthesis. We continue our analysis of the estimate ŵG,H in the situation
when the observation is ω = Ax∗ +Nν∗ + ξ with ξ ∈ Ξε(G,H), see (37). By (41), for z = ν̂ − ν∗
and all g ∈ Rm we have

|gTNz| � min
{
‖NT g‖2Opt2,

√
2s‖NT g‖2Opt∞, 2s‖NT g‖∞Opt∞

}
what implies (cf. (42)) that for all i � 2m

|gTi AΔ| � 2κ(ε)‖gi‖2 +min
{
‖NT gi‖2Opt2,

√
2s‖NT gi‖2Opt∞, 2s‖NT gi‖∞Opt∞

}
. (44)

Note that the right-hand side in (44) is nonconvex in g, making our design techniques inapplicable.
To circumvent this difficulty, we intend to utilize the following important feature of polyhedral
estimates: one may easily “aggregate” several estimates of this type to yield an estimate with the
risk which is nearly as small as the smallest of the risks of the estimates combined.

Here is how it works in the present setting. We split the m × 2m contrast G into two m ×m
blocks Gχ = [gχ,1, . . . , gχ,m], χ = 1, 2, and design the blocks utilizing the respective inequalities
inherited from (44), specifically, the inequalities

|gT1,iAΔ| � 2κ(ε)‖g1,i‖2 + 2s‖NT g1,i‖∞Opt∞,

|gT2,iAΔ| � 2κ(ε)‖g2,i‖2 + ‖NT g2,i‖2 min{Opt2,
√
2sOpt∞}︸ ︷︷ ︸

=:�2,H

where Δ = x̂− x∗. We weaken these inequalities to

|gT1,iAΔ|2 � π2
1(g1,i), π1(g) =

√
8κ2(ε)‖g‖22 + 8s2Opt2∞‖NT g‖2∞,

|gT2,iAΔ|2 � π2
2(g2,i), π2(g) =

√
8κ2(ε)‖g‖22 + 2�22,H‖NT g‖22.

Notice that norms πχ, χ = 1, 2, are ellitopic, so we can use in our present situation the techniques
from Section 3.2, thus arriving at an analogue of Theorem 2. To this end, denote by n1, . . . ,nn the
columns of N and set

M j = 8κ2(ε)Im + 8s2Opt2∞njn
T
j , j � m, and Q =

(
8κ2(ε)Im + 2�22,HNNT

)−1/2
.

Next, observe that the unit ball of π1(·) is the ellitope

M =
{
w ∈ Rm : ∃r ∈ [0, 1]M : wTM jw � ρj, j = 1, . . . ,M

}
and the unit ball of π2 is the ellipsoid wTQ

−2
w � 1. Now, let us consider the optimization problem

Opt = min
λ,μ,τ,Θ1,Θ2,ρ

⎧⎨⎩fH(λ, μ, τ,Θ1,Θ2, ρ) : λ � 0, μ � 0, τ � 0, (45a)

Θ1 � 0, Θ2 � 0, Tr(M jΘ1) � ρ, j = 1, . . . , n,⎡⎣ ∑
� λ�S�

1
2B

1
2B

T ∑
k μkTk+AT

[∑
i τihih

T
i

]
A+AT (Θ1 +QΘ2Q

T )A

⎤⎦ � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where

fH(λ, μ, τ,Θ1,Θ2, ρ) = φS(λ) + 4φT (μ)+
∑
i

τiψ
2
H(hi) + Tr(Θ2) + 2

√
2 ln(4m2n)ρ. (45b)

Note that the constraints on Θ1 and ρ in this problem say exactly that (Θ1, ρ) belongs to the
cone K associated, according to Proposition 2, with the ellitope M in the role of W.
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Theorem 3. Given a feasible solution (λ, μ, τ,Θ1,Θ2, ρ) to (45), let us build m × m contrast
matrices G1, G2 as follows.

• To build G1, we apply the second part of Proposition 2 to (Θ1, ρ, M) in the role of (Θ, ρ, W),
to get, in a computationally efficient way, a decomposition Θ1 =

∑m
i=1 γig1,ig

T
1,i with g1,i ∈ M

and γi � 0,
∑

i γi � 2
√
2 ln(4m2n)ρ. We set G1 = [g1,1, . . . , g1,m].

• To build G2, we subject Θ2 to the eigenvalue decomposition Θ2 = ΓDiag{χ}ΓT and set G2 =
[g2,1, . . . , g2,m] = QΓ.

Note that Θ1 +QΘ2Q =
∑

i γig1,ig
T
1,i +

∑
i χig2,ig

T
2,i.

For the resulting polyhedral estimate ŵG,H and for all x∗ ∈ X , s-sparse ν∗, and ξ ∈ Ξε(G,H) if
holds

‖ŵG,H(Ax∗ +Nν∗ + ξ)−Bx∗‖ � fH(λ, μ, τ,Θ1,Θ2, ρ) (46)

implying that the ε-risk of the estimate is upper-bounded by fH(λ, μ, τ,Θ1,Θ2, ρ) (as ξ ∈ Ξε(G,H)
with probability � 1− ε).

Proof of the theorem follows that of Theorem 2 and is omitted.

3.4. Putting Things Together

Finally, we can “aggregate” polyhedral estimates from Sections 3.2 and 3.3 in the following
construction (cf. [20, Section 5.1.6]):

Let us put
κ(ε) = σ (2 ln[(2n + 2M + 8m)/ε])1/2 ,

and let H̃ = [h̃1, . . . , h̃n] ∈ Rm×n, G̃ = [g̃1, . . . , g̃2m] ∈ Rm×2m, and H = [h1, . . . , hM ] ∈
Rm×M , G = [g1, . . . , g2m] ∈ Rm×2m be the contrast matrices specified according to the
synthesis recipes of Sections 3.2 and 3.3, respectively. We define the aggregated estimate ŵ
of w∗ as ŵ(ω) = Bx̂(ω) where x̂(ω) is the x-component of

(x̂(ω), ν̂(ω))∈Argmin
x,ν

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖ν‖1 : x ∈ X ,

|h̃Tk [Nν +Ax− ω]| � κ(ε)‖h̃k‖2, k = 1, . . . , n,

|hT
k [Nν +Ax− ω]| � κ(ε)‖hk‖2, k = 1, . . . ,M,

|g̃Ti [Nν +Ax− ω]|∞ � κ(ε)‖g̃i‖2, i = 1, . . . , 2m,

|gTi [Nν +Ax− ω]|∞ � κ(ε)‖gi‖2, i = 1, . . . , 2m,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
when the problem is feasible, and x̂(ω) = 0 otherwise.

Let us denote G = [G̃,G] ∈ Rm×4m, let also (λ̃, μ̃, γ̃) be a feasible solution to the problem (27) with
H = H̃, and let (λ, μ, γ) be a feasible solution to the problem (43) with H = H. Let fG,H and f̄G,H

be specified in (27) and (43) respectively. From Propositions 3 and 4 it immediately follows that
for every s-sparse ν∗ and every x∗ ∈ X the error bound

Riskε[ŵ(·)|X ,N ] � min
[
f
G,H̃

(λ̃, μ̃, γ̃), f̄G,H(λ, μ, γ)
]

(47)

holds true.

Note that the resulting estimate can be efficiently optimized w.r.t. all parameters involved,
except for H, by specifying

• H̃ as (near) minimizer of ρ[H] over H ∈ H (23),
• G̃ as a result of the decomposition of the (Θ1,Θ2)-component of a (near-) optimal solution to
the problem (33a), (33b) (see Theorem 2) associated with H̃,

• G as a result of the decomposition of the (Θ1,Θ2)-component of a (near-) optimal solution to
the problem (45) (see Theorem 3) associated with H.
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3.5. Numerical Illustration

In our “proof of concept” experiment we compare three estimates of x∗: 1) estimate x̂HG with
contrast matrix [H,G] computed according to the recipe of Section 3.2, 2) estimate x̂IG with
contrast [H,G] = [Im, G] with G conceived utilizing the synthesis routine of Section 3.3.2, and
3) “aggregated” estimate x̂HIG with combined contrast [H, Im, G,G]. We solve adopted versions of
optimization problems in (28) and (33a), (33b) to compute contrasts H and G of the estimate x̂HG,
and solve (45), to build the contrast G of x̂IG. For instance, when computing the contrast G, we
set κ(ε) =

√
2σerfcinv

( ε
2n

)
where erfcinv(·) is the inverse complementary Gaussian error function;

when processing problem (45) numerically, Θ1 was set to 0; the resulting problem can be rewritten as

Opt = min
λ,μ,γ,Θ

⎧⎨⎩λ+ 4
p∑

k=1

μk +
n∑

j=1

γj +Tr(Θ) : λ � 0, μ � 0, γ � 0, Θ � 0,

[
λIp

1
2Ip

1
2Ip A

T
ΘA+ P TDiag{μ}P +A

T
Diag{γ}A

]
� 0

}
(48)

where A = A/ρ2 with ρ2 = 2κ(ε) + �2,H , the subsequent entries in Pz being z1, [z2 − z1]/h,

[zi−2 − 2zi−1 + zi]/h
2, 3 � i � p, and h = 2π/p. The corresponding risk bounds are evaluated by

computing solutions to (43). Optimization problems involved are processed using Mosek commercial
solver [30] via CVX [15].9

In our illustration,

• m = n = 256, q = p = 32, N = In, B = Ip, A is a n× p random matrix with Gaussian entries
such that ATA = Ip;

• X is the restriction on the p-point equidistant grid on the segment Δ = [0, 2π] of functions f
satisfying |f(0)| � 4, |f ′(0)| � 1, |f ′′(t)| � 4, t ∈ Δ;

• the norm ‖ · ‖ quantifying the recovery error is the standard Euclidean norm on Rp;

• ξ ∼ N (0, σ2Im) with σ = 0.1, ε = 0.05, and s = 8.

Figure 1 illustrates the results of the computation. In each experiment, we compute nS = 100
recoveries x̂HG, x̂IG, and x̂HIG of randomly selected signals x∗ ∈ X with generated at random

Fig. 1. Left plot: distributions of ‖ · ‖2-errors of recovery of x∗ and theoretical upper bounds
on Risk0.05 (red horizontal bars); right plot: distributions of ‖ · ‖2-errors and theoretical upper
bounds on Risk0.05 of recovery of ν∗.
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Fig. 2. A typical signal/estimates realization and recovery errors.

sparse nuisances ν∗. The results are presented in the left plot in Fig. 1. The right plot displays
the boxplots of errors of recovery of the nuisance ν∗ along with the upper risk bound Opt2 of (40).
Figure 2 illustrates a typical realization of the signal and the recovery errors; the values of ‖ · ‖2-
recovery errors are ‖x̂HG − x∗‖2 = 1.48 . . . , ‖x̂IG − x∗‖2 = 2.02 . . . , and ‖x̂HIG − x∗‖2 = 1.43 . . . ,
the corresponding ‖x∗‖2 = 72.2 . . . .

APPENDIX. Error bound for �1 recovery

Condition Q∞(s, κ)

Given an m× n sensing matrix N , positive integer s � n, and κ ∈ (0, 1/2), we say that
m× p matrix H satisfy condition Q∞(s, κ) if

‖w‖∞ � ‖HTNw‖∞ +
κ

s
‖w‖1 ∀w ∈ Rn. (A.1)

For y ∈ Rn, let ys stand for the vector obtained from y by zeroing our all but the s largest in
magnitude entries.

Proposition 5. Given N and integer s > 0, assume that H satisfies the condition Q∞(s, κ) with
κ < 1

2 . Then for all ν, ν̂ ∈ Rn such that ‖ν̂‖1 � ‖ν‖1 it holds:

‖ν̂ − ν‖q �
(2s)

1
q

1− 2κ

[
‖HTN [ν̂ − ν]‖∞ +

‖ν − νs‖1
s

]
, 1 � q � ∞. (A.2)

Proof. Let us denote ρ = ‖HTN [ν̂ − ν]‖∞, and let z = ν̂ − ν.

1o. Let I ⊂ {1, . . . , n} of cardinality � s and let I be its complement in {1, . . . , n}. When denoting
by xI the vector obtained from a vector x by zeroing out the entries with indexes not belonging
to I, we have

‖ν̂I‖1 = ‖ν̂‖1 − ‖ν̂I‖1 � ‖ν‖1 − ‖ν̂I‖1 = ‖νI‖1 + ‖νI‖1 − ‖ν̂I‖1 � ‖zI‖1 + ‖νI‖1,

and therefore

‖zI‖1 � ‖ν̂I‖1 + ‖νI‖1 � ‖zI‖1 + 2‖νI‖1.
9 MATLAB code for this experiment is available at GitHub repository https://github.com/ai1-fr/poly-robust.
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It follows that

‖z‖1 = ‖zI‖1 + ‖zI‖1 � 2‖zI‖1 + 2‖νI‖1. (A.3)

Besides this, by definition of ρ we have

‖HTNz‖∞ � ρ. (A.4)

2o. Since H satisfies Q∞(s, κ), we have

‖z‖s,1 � s‖HTNz‖∞ + κ‖z‖1

where ‖z‖s,1 is the �1-norm of the s-dimensional vector composed of the s largest in magnitude
entries of z. By (A.4) it follows that ‖z‖s,1 � sρ+κ‖z‖1 which combines with the evident inequality
‖zI‖ � ‖z‖s,1 (recall that Card(I) = s) and with (A.3) to imply that

‖z‖1 � 2‖zI‖1 + 2‖νI‖1 � 2sρ+ 2κ‖z‖1 + 2‖νI‖1,

hence (recall that κ � 1
2)

‖z‖1 � 2sρ+ 2‖νI‖1
1− 2κ

. (A.5)

On the other hand, since H satisfies Q∞(s, κ), we also have

‖z‖∞ � ‖HTNz‖∞ +
κ

s
‖z‖1,

which combines with (A.5) and (A.4) to imply that

‖z‖∞ � ρ+
κ

s

2sρ+ 2‖νI‖1
1− 2κ

= (1− 2κ)−1
[
ρ+

‖νI‖1
s

]
. (A.6)

We conclude that for all 1 � q � ∞,

‖z‖p � ‖z‖
q−1
q

∞ ‖z‖
1
q

1 � (2s)
1
q

1− 2κ

[
ρ+

‖νI‖1
s

]
. ��
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